Learning Supervised Scoring Ensemble for Emotion Recognition in the Wild

State-of-the-art approaches for the previous emotion recognition in the wild challenges are usually built on prevailing Convolutional Neural Networks (CNNs). Although there is clear evidence that CNNs with increased depth or width can usually bring improved predication accuracy, existing top approaches provide supervision only at the output feature layer, resulting in the insufficient training of deep CNN models. In this paper, we present a new learning method named Supervised Scoring Ensemble (SSE) for advancing this challenge with deep CNNs...